draft-eastlake-rfc6931bis-xmlsec-uris-28.original   draft-eastlake-rfc6931bis-xmlsec-uris-28.txt 
Internet Engineering Task Force (IETF) D. Eastlake 3rd
Request for Comments: 0000 Futurewei Technologies, Inc.
Obsoletes: 6931 June 2022
Category: Standards Track
ISSN: 2070-1721
Additional XML Security Uniform Resource Identifiers (URIs)
This document updates and corrects the IANA "XML Security URIs"
registry that lists URIs intended for use with XML digital
signatures, encryption, canonicalization, and key management. These
URIs identify algorithms and types of information. This document
also updates, corrects three errata against, and obsoletes RFC 6931.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
Copyright Notice
Copyright (c) 2022 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Revised BSD License text as described in Section 4.e of the
Trust Legal Provisions and are provided without warranty as described
in the Revised BSD License.
Table of Contents
1. Introduction
1.1. Terminology
1.2. Acronyms
2. Algorithms
2.1. DigestMethod (Hash) Algorithms
2.1.1. MD5
2.1.2. SHA-224
2.1.3. SHA-384
2.1.4. Whirlpool
2.1.5. SHA3 Algorithms
2.2. SignatureMethod MAC Algorithms
2.2.1. HMAC-MD5
2.2.2. HMAC SHA Variations
2.2.3. HMAC-RIPEMD160
2.2.4. Poly1305
2.2.5. SipHash-2-4
2.2.6. XMSS and XMSSMT
2.3. SignatureMethod Public Key Signature Algorithms
2.3.1. RSA-MD5
2.3.2. RSA-SHA256
2.3.3. RSA-SHA384
2.3.4. RSA-SHA512
2.3.5. RSA-RIPEMD160
2.3.6. ECDSA-SHA*, ECDSA-RIPEMD160, ECDSA-Whirlpool
2.3.7. ESIGN-SHA*
2.3.8. RSA-Whirlpool
2.3.9. RSASSA-PSS with Parameters
2.3.10. RSASSA-PSS without Parameters
2.3.11. RSA-SHA224
2.3.12. Edwards-Curve
2.4. Minimal Canonicalization
2.5. Transform Algorithms
2.5.1. XPointer
2.6. EncryptionMethod Algorithms
2.6.1. ARCFOUR Encryption Algorithm
2.6.2. Camellia Block Encryption
2.6.3. Camellia Key Wrap
2.6.5. SEED Block Encryption
2.6.6. SEED Key Wrap
2.6.7. ChaCha20
2.6.8. ChaCha20+Poly1305
2.7. Key AgreementMethod Algorithm
2.7.1. X25519 and X448 Key Agreement
2.8. KeyDerivationMethod Algorithm
2.8.1. HKDF Key Derivation
3. KeyInfo
3.1. PKCS #7 Bag of Certificates and CRLs
3.2. Additional RetrievalMethod Type Values
4. Indexes
4.1. Index by Fragment Index
4.2. Index by URI
5. Allocation Considerations
5.1. W3C Allocation Considerations
5.2. IANA Considerations
6. Security Considerations
7. References
7.1. Normative References
7.2. Informational References
Appendix A. Changes from RFC 6931
Appendix B. Bad URIs
Author's Address
1. Introduction
XML digital signatures, canonicalization, and encryption were
standardized by the W3C and by the joint IETF/W3C XMLDSIG Working
Group [W3C] [XMLSEC]. These are now W3C Recommendations and some are
also RFCs. They are available as follows:
| RFC Status | W3C REC | Topic |
| [RFC3275] Draft Standard | [XMLDSIG10] | XML Digital Signatures |
| [RFC3076] Informational | [CANON10] | Canonical XML |
| - - - - - - | [XMLENC10] | XML Encryption 1.0 |
| [RFC3741] Informational | [XCANON] | Exclusive XML |
| | | Canonicalization 1.0 |
Table 1
These documents and recommendations use URIs [RFC3986] to identify
algorithms and keying information types. The W3C has subsequently
produced updated XML Signature 1.1 [XMLDSIG11], Canonical XML 1.1
[CANON11], and XML Encryption 1.1 [XMLENC11] versions, as well as a
new XML Signature Properties specification [XMLDSIG-PROP].
In addition, the XML Encryption recommendation has been augmented by
[GENERIC], which defines algorithms, XML types, and elements
necessary to use generic hybrid ciphers in XML security applications.
[GENERIC] also provides for a key encapsulation algorithm and a data
encapsulation algorithm, with the combination of the two forming the
generic hybrid cipher.
All camel-case element names (names with both interior upper and
lower case letters) herein, such as DigestValue, are from these
This document is an updated convenient reference list of URIs and
corresponding algorithms in which there is expressed interest. This
document obsoletes and fixes Errata [Err3597], [Err3965], and
[Err4004] against [RFC6931].
All of the URIs for algorithms and data types herein are listed in
the indexes in Section 4. Of these URIs, those that were added by
earlier RFCs or by this document have a subsection in Sections 2 or
3. A few URIs defined elsewhere also have a subsection in Sections 2
or 3, but most such URIs do not. For example, use of SHA-256 as
defined in [XMLENC11] has no subsection here but is included in the
indexes in Section 4.
Specification in this document of the URI representing an algorithm
does not imply endorsement of the algorithm for any particular
purpose. A protocol specification, which this is not, generally
gives algorithm and implementation requirements for the protocol.
Security considerations for algorithms are constantly evolving, as
documented elsewhere. This specification simply provides some URIs
and relevant formatting when those URIs are used.
This document is not intended to change the algorithm implementation
requirements of any IETF or W3C document. Use of [RFC2119]/[RFC8174]
terminology is intended to be only such as is already stated or
implied by other authoritative documents.
Progressing XML Digital Signature [RFC3275] along the Standards Track
required removal of any algorithms from the original version
[RFC3075] for which there was not demonstrated interoperability.
This required removal of the Minimal Canonicalization algorithm, in
which there was continued interest. The URI for Minimal
Canonicalization was included in [RFC6931] and is included here.
1.1. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
"camel-case" refers to terms that are mostly lower case but have
internal capital letters.
1.2. Acronyms
The following acronyms are used in this document:
AAD - Additional Authenticated Data
AEAD - Authenticated Encryption with Associated Data
HMAC - Hashed Message Authentication Code [RFC2104] [RFC5869]
IETF - Internet Engineering Task Force <https://www.ietf.org>
MAC - Message Authentication Code
MD - Message Digest
NIST - National Institute of Standards and Technology
RSA - Rivest, Shamir, and Adleman
SHA - Secure Hash Algorithm
URI - Uniform Resource Identifier [RFC3986]
W3C - World Wide Web Consortium <https://www.w3.org>
XML - eXtensible Markup Language
2. Algorithms
The URI [RFC3986] that was dropped from the XML Digital Signature
standard due to the transition from Proposed Standard to Draft
Standard [RFC3275] is included in Section 2.4 with its original
prefix so as to avoid changing the XML Digital Signatures (XMLDSIG)
standard's namespace.
Additional algorithms in RFC 4051 were given URIs that start with
Further algorithms added in [RFC6931] were given URIs that start with
and algorithms added in this document are given URIs that start with
In addition, for ease of reference, this document includes in the
indexes in Section 4 many cryptographic algorithm URIs from XML
security documents using the namespaces with which they are defined
in those documents as follows:
for some URIs specified in [RFC3275],
for some URIs specified in [XMLENC10], and
for some URIs specified in [GENERIC].
See also [XMLSECXREF].
2.1. DigestMethod (Hash) Algorithms
These algorithms are usable wherever a DigestMethod element occurs.
2.1.1. MD5
The MD5 algorithm [RFC1321] takes no explicit parameters. An example
of an MD5 DigestAlgorithm element is:
An MD5 digest is a 128-bit string. The content of the DigestValue
element SHALL be the base64 [RFC4648] encoding of this bit string
viewed as a 16-octet stream. See [RFC6151] for MD5 security
2.1.2. SHA-224
The SHA-224 algorithm [FIPS180-4] [RFC6234] takes no explicit
parameters. An example of a SHA-224 DigestAlgorithm element is:
Algorithm="http://www.w3.org/2001/04/xmldsig-more#sha224" />
A SHA-224 digest is a 224-bit string. The content of the DigestValue
element SHALL be the base64 [RFC4648] encoding of this string viewed
as a 28-octet stream.
2.1.3. SHA-384
The SHA-384 algorithm [FIPS180-4] takes no explicit parameters. An
example of a SHA-384 DigestAlgorithm element is:
Algorithm="http://www.w3.org/2001/04/xmldsig-more#sha384" />
A SHA-384 digest is a 384-bit string. The content of the DigestValue
element SHALL be the base64 [RFC4648] encoding of this string viewed
as a 48-octet stream.
2.1.4. Whirlpool
The Whirlpool algorithm [ISO-10118-3] takes no explicit parameters.
An example of a Whirlpool DigestAlgorithm element is:
Algorithm="http://www.w3.org/2007/05/xmldsig-more#whirlpool" />
A Whirlpool digest is a 512-bit string. The content of the
DigestValue element SHALL be the base64 [RFC4648] encoding of this
string viewed as a 64-octet stream.
2.1.5. SHA3 Algorithms
NIST conducted a hash function competition for an alternative to the
SHA family. The Keccak-f[1600] algorithm was selected [KECCAK].
This hash function is commonly referred to as "SHA-3" [FIPS202].
A SHA-3 224, 256, 384, and 512 digest is a 224-, 256-, 384-, and
512-bit string, respectively. The content of the DigestValue element
SHALL be the base64 [RFC4648] encoding of this string viewed as a
28-, 32-, 48-, and 64-octet stream, respectively. An example of a
SHA3-224 DigestAlgorithm element is:
Algorithm="http://www.w3.org/2007/05/xmldsig-more#sha3-224" />
2.2. SignatureMethod MAC Algorithms
This section covers SignatureMethod Message Authentication Code (MAC)
Note: Some text in this section is duplicated from [RFC3275] for the
convenience of the reader. [RFC3275] is normative in case of
2.2.1. HMAC-MD5
The HMAC algorithm [RFC2104] takes the truncation length in bits as a
parameter; if the parameter is not specified, then all the bits of
the hash are output. An example of an HMAC-MD5 SignatureMethod
element is as follows:
The output of the HMAC algorithm is the output (possibly truncated)
of the chosen digest algorithm. This value SHALL be base64 [RFC4648]
encoded in the same straightforward fashion as the output of the
digest algorithms. Example: the SignatureValue element for the HMAC-
MD5 digest
9294727A 3638BB1C 13F48EF8 158BFC9D
from the test vectors in <xref target="RFC2104"/> would be
Schema Definition:
<simpleType name="HMACOutputLength">
<restriction base="integer"/>
<!ELEMENT HMACOutputLength (#PCDATA) >
The Schema Definition and DTD immediately above are copied from
See [RFC6151] for HMAC-MD5 security considerations.
2.2.2. HMAC SHA Variations
SHA-224, SHA-256, SHA-384, and SHA-512 [FIPS180-4] [RFC6234] can also
be used in HMAC as described in Section 2.2.1 for HMAC-MD5.
2.2.3. HMAC-RIPEMD160
RIPEMD-160 [ISO-10118-3] is a 160-bit hash that is used here in HMAC.
The output can be optionally truncated. An example is as follows:
2.2.4. Poly1305
Poly1305 [RFC8439] [POLY1305] is a high-speed message authentication
code algorithm. It takes a 32-octet one-time key and a message and
produces a 16-octet tag, which is used to authenticate the message.
An example of a Poly1305 SignatureMethod element is as follows:
2.2.5. SipHash-2-4
SipHash [SipHash1] [SipHash2] computes a 64-bit MAC from a 128-bit
secret key and a variable-length message. An example of a SipHash-
2-4 SignatureMethod element is as follows:
2.2.6. XMSS and XMSSMT
XMSS (eXtended Merkle Signature Scheme) and XMSSMT (XMSS Multi-Tree)
[RFC8391] are stateful hash-based signature schemes [FIPS800-208].
According to NIST, it is believed that the security of these schemes
depends only on the security of the underlying hash functions, in
particular the infeasibility of finding a preimage or a second
preimage, and it is believed that the security of these hash
functions will not be broken by the development of large-scale
quantum computers.
For further information on the intended usage of these signature
schemes and the careful state management required to maintain their
strength, see [FIPS800-208].
IANA maintains a registry whose entries correspond to the XMSS
Identifiers below (see [XMSS]). The fragment part of the URIs is
formed by replacing occurrences of underscore ("_") in the name
appearing in the IANA Registry with hyphen ("-").
Identifiers for XMSS:
The hash functions used in the XMSS signature schemes above are SHA2
[RFC6234] or one of the two the SHAKE extensible output functions
[FIPS202] as indicated by the second token of the URI extension
(SHAKE means SHAKE128). The tree height for XMSS is 10, 16, or 20 as
indicated by the third token of the URI extension. The SHA2 or SHAKE
output size is 192, 256, or 512 bits as indicated by the final token
of the URI extension. SHA2 with 192 bits of output means
SHA2-256/192, that is, the most significant 192 bits of the SHA-256
hash as specified in [FIPS800-208].
IANA maintains a registry whose entries correspond to the XMSSMT
Identifiers below (see [XMSS]). The fragment part of the URIs is
formed by replacing occurrences of underscore ("_") and slash ("/")
in the name appearing in the IANA Registry with hyphen ("-").
Identifiers for XMSSMT:
The hash functions used in the XMSSMT signature schemes above are
SHA2 [RFC6234] or one of the two the SHAKE extensible output function
[FIPS202] as indicated by the second token of the URI extension
(SHAKE means SHAKE128). The tree height for XMSSMT is 20, 40, or 60
as indicated by the third token of the URI extension. The number of
layers is indicated by a fourth token. The SHA2, SHAKE, or SHAKE256
output size is 192, 256, or 512 bits as indicated by the final token
of the URI extension. SHA2 with 192 bits of output means
SHA2-256/192, that is, the most significant 192 bits of the SHA-256
hash as specified in [FIPS800-208].
An example of an XMSS SignatureAlgorithm element is:
2.3. SignatureMethod Public Key Signature Algorithms
These algorithms are distinguished from those in Section 2.2 in that
they use public key methods. That is to say, the signing key is
different from and not feasibly derivable from the verification key.
2.3.1. RSA-MD5
This implies the PKCS#1 v1.5 padding algorithm described in
[RFC8017]. An example of use is:
Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-md5" />
The SignatureValue content for an RSA-MD5 signature is the base64
[RFC4648] encoding of the octet string computed as per Section 8.2.1
of [RFC8017], signature generation for the RSASSA-PKCS1-v1_5
signature scheme. As specified in the EMSA-PKCS1-V1_5-ENCODE
function in Section 9.2 of [RFC8017], the value input to the
signature function MUST contain a prepended algorithm object
identifier for the hash function, but the availability of an ASN.1
parser and recognition of OIDs is not required of a signature
verifier. The PKCS#1 v1.5 representation appears as:
CRYPT (PAD (ASN.1 (OID, DIGEST (data))))
The padded ASN.1 will be of the following form:
01 | FF* | 00 | prefix | hash
The vertical bar ("|") represents concatenation. "01", "FF", and "00"
are fixed octets of the corresponding hexadecimal value, and the
asterisk ("*") after "FF" indicates repetition. "hash" is the MD5
digest of the data. "prefix" is the ASN.1 BER MD5 algorithm
designator prefix required in PKCS #1 [RFC8017], that is,
hex 30 20 30 0c 06 08 2a 86 48 86 f7 0d 02 05 05 00 04 10
This prefix is included to make it easier to use standard
cryptographic libraries. The FF octet MUST be repeated enough times
that the value of the quantity being CRYPTed is exactly one octet
shorter than the RSA modulus.
See [RFC6151] for MD5 security considerations.
2.3.2. RSA-SHA256
This implies the PKCS#1 v1.5 padding algorithm [RFC8017] as described
in Section 2.3.1 but with the ASN.1 BER SHA-256 algorithm designator
prefix. An example of use is:
Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256" />
2.3.3. RSA-SHA384
This implies the PKCS#1 v1.5 padding algorithm [RFC8017] as described
in Section 2.3.1 but with the ASN.1 BER SHA-384 algorithm designator
prefix. An example of use is:
Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha384" />
Because it takes about the same effort to calculate a SHA-384 message
digest as it does a SHA-512 message digest, it is suggested that RSA-
SHA512 be used in preference to RSA-SHA384 where possible.
2.3.4. RSA-SHA512
This implies the PKCS#1 v1.5 padding algorithm [RFC8017] as described
in Section 2.3.1 but with the ASN.1 BER SHA-512 algorithm designator
prefix. An example of use is:
Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha512" />
2.3.5. RSA-RIPEMD160
This implies the PKCS#1 v1.5 padding algorithm [RFC8017] as described
in Section 2.3.1 but with the ASN.1 BER RIPEMD160 algorithm
designator prefix. An example of use is:
2.3.6. ECDSA-SHA*, ECDSA-RIPEMD160, ECDSA-Whirlpool
The Elliptic Curve Digital Signature Algorithm (ECDSA) [FIPS186-4] is
the elliptic curve analogue of the Digital Signature Algorithm (DSA)
signature method, i.e., the Digital Signature Standard (DSS). It
takes no explicit parameters. For some detailed specifications of
how to use it with SHA hash functions and XML Digital Signature,
please see [X9.62] and [RFC4050]. The #sha3-*, #ecdsa-ripemd160, and
#ecdsa-whirlpool fragments identify signature methods processed in
the same way as specified by the #ecdsa-sha1 fragment, with the
exception that a SHA3 function (see Section 2.1.5), RIPEMD160, or
Whirlpool (see Section 2.1.4) is used instead of SHA-1.
The output of the ECDSA algorithm consists of a pair of integers
usually referred to as the pair (r, s). The signature value consists
of the base64 encoding of the concatenation of two octet streams that
respectively result from the octet encoding of the values r and s in
that order. Conversion from integer to octet stream must be done
according to the I2OSP operation defined in the [RFC8017]
specification with the l parameter equal to the size of the base
point order of the curve in octets (e.g., 32 for the P-256 curve and
66 for the P-521 curve [FIPS186-4]).
For an introduction to elliptic curve cryptographic algorithms, see
[RFC6090] and note the errata (Errata IDs 2773-2777).
2.3.7. ESIGN-SHA*
The ESIGN algorithm specified in [IEEEP1363a] is a signature scheme
based on the integer factorization problem.
An example of use is:
2.3.8. RSA-Whirlpool
As in the definition of the RSA-SHA1 algorithm in [XMLDSIG11], the
designator "RSA" means the RSASSA-PKCS1-v1_5 algorithm as defined in
[RFC8017]. When identified through the #rsa-whirlpool fragment
identifier, Whirlpool is used as the hash algorithm instead. Use of
the ASN.1 BER Whirlpool algorithm designator is implied. That
designator is:
hex 30 4e 30 0a 06 06 28 cf 06 03 00 37 05 00 04 40
as an explicit octet sequence. This corresponds to OID
1.0.10118.3.0.55 defined in [ISO-10118-3].
An example of use is:
2.3.9. RSASSA-PSS with Parameters
These identifiers use the PKCS#1 EMSA-PSS encoding algorithm
[RFC8017]. The RSASSA-PSS algorithm takes the digest method (hash
function), a mask generation function, the salt length in octets
(SaltLength), and the trailer field as explicit parameters.
Algorithm identifiers for hash functions specified in XML encryption
[XMLENC11], [XMLDSIG11], and in Section 2.1 are considered to be
valid algorithm identifiers for hash functions. According to
[RFC8017], the default value for the digest function is SHA-1, but
due to the discovered weakness of SHA-1 [RFC6194], it is recommended
that SHA-256 or a stronger hash function be used. Notwithstanding
[RFC8017], SHA-256 is the default to be used with these
SignatureMethod identifiers if no hash function has been specified.
The default salt length for these SignatureMethod identifiers, if the
SaltLength is not specified, SHALL be the number of octets in the
hash value of the digest method as recommended in [RFC4055]. In a
parameterized RSASSA-PSS signature, the ds:DigestMethod and the
SaltLength parameters usually appear. If they do not, the defaults
make this equivalent to <http://www.w3.org/2007/05/xmldsig-
more#sha256-rsa-MGF1> (see Section 2.3.10). The TrailerField
defaults to 1 (0xBC) when omitted.
Schema Definition (target namespace <http://www.w3.org/2007/05/
<xs:element name="RSAPSSParams" type="pss:RSAPSSParamsType">
Top level element that can be used in xs:any namespace="#other"
wildcard of ds:SignatureMethod content.
<xs:complexType name="RSAPSSParamsType">
<xs:element ref="ds:DigestMethod" minOccurs="0"/>
<xs:element name="MaskGenerationFunction"
type="pss:MaskGenerationFunctionType" minOccurs="0"/>
<xs:element name="SaltLength" type="xs:int"
<xs:element name="TrailerField" type="xs:int"
<xs:complexType name="MaskGenerationFunctionType">
<xs:element ref="ds:DigestMethod" minOccurs="0"/>
<xs:attribute name="Algorithm" type="xs:anyURI"
2.3.10. RSASSA-PSS without Parameters
[RFC8017] currently specifies only one mask generation function MGF1
based on a hash function. Although [RFC8017] allows for
parameterization, the default is to use the same hash function as the
digest method function. Only this default approach is supported by
this section; therefore, the definition of a mask generation function
type is not needed yet. The same applies to the trailer field.
There is only one value (0xBC) specified in [RFC8017]. Hence, this
default parameter must be used for signature generation. The default
salt length is the length of the hash function.
An example of use is:
2.3.11. RSA-SHA224
This implies the PKCS#1 v1.5 padding algorithm [RFC8017] as described
in Section 2.3.1 but with the ASN.1 BER SHA-224 algorithm designator
prefix. An example of use is:
Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha224" />
Because it takes about the same effort to calculate a SHA-224 message
digest as it does a SHA-256 message digest, it is suggested that RSA-
SHA256 be used in preference to RSA-SHA224 where possible.
See also Appendix B concerning an erroneous version of this URI that
appeared in [RFC6931].
2.3.12. Edwards-Curve
The Edwards-curve Digital Signature Algorithm (EdDSA) is a variant of
Schnorr's signature system with Edwards curves. A specification is
provided and some advantages listed in [RFC8032]. The general EdDSA
takes 11 parameters that must be carefully chosen for secure and
efficient operation. Identifiers for two variants, Ed25519 and
Ed448, are given below.
Ed25519 uses 32-octet public keys and produces 64-octet signatures.
It provides about 128 bits of security and uses SHA-512 [RFC6234]
internally as part of signature generation.
Ed448 uses 57-octet public keys and produces 114-octet signatures.
It provides about 224 bits of security and uses "SHAKE256" [FIPS202]
internally as part of signature generation. (SHAKE256 is specified
by NIST as an "Extensible Output Function" and not specified or
approved by NIST as a secure hash function.)
For further information on the variants of EdDSA identified below,
see [RFC8032].
An example of use is:
<SignatureMethod Algorithm=
"http://www.w3.org/2021/04/xmldsig-more#eddsa-ed448" />
2.4. Minimal Canonicalization
Thus far, two independent interoperable implementations of Minimal
Canonicalization have not been announced. Therefore, when XML
Digital Signature was advanced along the Standards Track from
[RFC3075] to [RFC3275], Minimal Canonicalization was dropped.
However, there was still interest. For its definition, see
Section 6.5.1 of [RFC3075].
For reference, its identifier remains:
2.5. Transform Algorithms
The XPointer Transform algorithm syntax is described below. All
CanonicalizationMethod algorithms can also be used as Transform
2.5.1. XPointer
This transform algorithm takes an [XPointer] as an explicit
parameter. An example of use is:
xpointer(id("foo")) xmlns(bar=http://foobar.example)
Schema Definition:
<element name="XPointer" type="string"/>
<!ELEMENT XPointer (#PCDATA) >
Input to this transform is an octet stream (which is then parsed into
Output from this transform is a node set; the results of the XPointer
are processed as defined in the XMLDSIG specification [RFC3275] for a
same-document XPointer.
2.6. EncryptionMethod Algorithms
This subsection gives identifiers and information for several
EncryptionMethod Algorithms.
2.6.1. ARCFOUR Encryption Algorithm
ARCFOUR is a fast, simple stream encryption algorithm that is
compatible with RSA Security's RC4 algorithm [RC4] (Rivest Cipher 4);
however, RC4 has been found to have a number of weaknesses and its
use is prohibited in several IETF protocols, for example TLS
[RFC7465]. An example EncryptionMethod element using ARCFOUR is:
Arcfour makes use of the generic KeySize parameter specified and
defined in [XMLENC11].
2.6.2. Camellia Block Encryption
Camellia is a block cipher with the same interface as the AES
[CAMELLIA] [RFC3713]; it has a 128-bit block size and 128-, 192-, and
256-bit key sizes. In XML Encryption, Camellia is used in the same
way as the AES: It is used in the Cipher Block Chaining (CBC) mode
with a 128-bit initialization vector (IV). The resulting cipher text
is prefixed by the IV. If included in XML output, it is then base64
encoded. An example Camellia EncryptionMethod is as follows:
2.6.3. Camellia Key Wrap
Camellia [CAMELLIA] [RFC3713] key wrap is identical to the AES key
wrap algorithm [RFC3394] specified in the XML Encryption standard
with "AES" replaced by "Camellia". As with AES key wrap, the check
value is 0xA6A6A6A6A6A6A6A6.
The algorithm is the same regardless of the size of the Camellia key
used in wrapping, called the "key encrypting key" or "KEK". If
Camellia is supported, it is particularly suggested that wrapping
128-bit keys with a 128-bit KEK and wrapping 256-bit keys with a
256-bit KEK be supported.
An example of use is:
These algorithms, specified in [ISO-18033-2], are key encapsulation
mechanisms using elliptic curve or RSA encryption. RSAEA-KEM and
ECIES-KEM are also specified in [GENERIC].
An example of use of PSEC-KEM is:
See [ISO-18033-2] for information on the parameters above.
2.6.5. SEED Block Encryption
SEED [RFC4269] is a block cipher with a 128-bit block size and
128-bit key size. In XML Encryption, SEED can be used in the Cipher
Block Chaining (CBC) mode with a 128-bit initialization vector (IV).
The resulting cipher text is prefixed by the IV. If included in XML
output, it is then base64 encoded.
An example SEED EncryptionMethod is as follows:
Algorithm="http://www.w3.org/2007/05/xmldsig-more#seed128-cbc" />
2.6.6. SEED Key Wrap
Key wrapping with SEED is identical to Section 2.2.1 of [RFC3394]
with "AES" replaced by "SEED". The algorithm is specified in
[RFC4010]. The implementation of SEED is optional. The default
initial value is 0xA6A6A6A6A6A6A6A6.
An example of use is:
2.6.7. ChaCha20
ChaCha20 [RFC8439], a stream cipher, is a variant of Salsa20
[ChaCha]. It is considerably faster than AES in software-only
implementations. In addition to a 256-bit key and the plain text to
be encrypted, ChaCha20 takes a 96-bit Nonce and an initial 32-bit
Counter. The Nonce and Counter are represented as hex in nested
elements as shown below.
An example of use is:
2.6.8. ChaCha20+Poly1305
ChaCha20+Poly1305 is an Authenticated Encryption with Associated Data
(AEAD) algorithm. In addition to a 256-bit key and plain text to be
encrypted and authenticated, ChaCha20+Poly1305 takes a 96-bit Nonce
and variable-length Additional Authenticated Data (AAD). The Nonce
is represented as a child element of the EncryptionMethod element
with a hex value. The AAD is a string, which may be null. The AAD
element may be absent, in which case the AAD is null. The
CipherData, either present in the CipherValue or by reference, is the
concatenation of the encrypted ChaCha20 output and the Poly1305
128-bit tag.
An example of use is:
<AAD>The quick brown fox jumps over the lazy dog.</AAD>
2.7. Key AgreementMethod Algorithm
This subsection gives identifiers and information for an additional
key AgreementMethod Algorithm [XMLENC11].
2.7.1. X25519 and X448 Key Agreement
The X25519 and X448 key agreement algorithms are specified in
2.8. KeyDerivationMethod Algorithm
This subsection gives identifiers and information for an additional
KeyDerivationMethod Algorithm [XMLENC11].
2.8.1. HKDF Key Derivation
This section covers the HMAC-based Extract-and-Expand Key Derivation
Function (HKDF [RFC5869]).
HKDF takes as inputs a hash function, an optional non-secret "salt",
initial keying material (IKM), optional context and application-
specific "info", and the required output keying size. Note that
these strictly determine the output so, for example, invoking HKDF at
different times but with the same salt, info, initial keying
material, and output key size will produce identical output keying
The inputs can be supplied to HKDF as follows:
hash function: The algorithm attribute of a child DigestMethod
salt: The content of a Salt child element of AgreementMethod in hex.
If not provided, a string of zero octets as long as the hash
function output is used as specified in [RFC5869].
IKM: The content of an OriginatorKeyInfo child element of
AgreementMethod in hex. May be absent in some applications
where this is known through some other method.
info: The content of the KA-Nonce child element of AgreementMethod
in hex.
size: The content of a KeySize child element of AgreementMethod as a
decimal number.
Here is the test case from Appendix A.1 of [RFC5869] as an example:
3. KeyInfo
In Section 3.1, a KeyInfo element child is specified, while in
Section 3.2, additional KeyInfo Type values for use in
RetrievalMethod are specified.
3.1. PKCS #7 Bag of Certificates and CRLs
A PKCS #7 [RFC2315] "signedData" can also be used as a bag of
certificates and/or certificate revocation lists (CRLs). The
PKCS7signedData element is defined to accommodate such structures
within KeyInfo. The binary PKCS #7 structure is base64 [RFC4648]
encoded. Any signer information present is ignored. The following
is an example [RFC3092], eliding the base64 data:
3.2. Additional RetrievalMethod Type Values
The Type attribute of RetrievalMethod is an optional identifier for
the type of data to be retrieved. The result of dereferencing a
RetrievalMethod reference for all KeyInfo types with an XML structure
is an XML element or document with that element as the root. The
various "raw" key information types return a binary value. Thus,
they require a Type attribute because they are not unambiguously
4. Indexes
The following subsections provide an index by URI and by fragment
identifier (the portion of the URI after "#") of the algorithm and
KeyInfo URIs defined in this document and in the standards plus the
one KeyInfo child element name defined in this document. The "Sec/
Doc" column has the section of this document or, if not specified in
this document, the standards document where the item is specified.
See also [XMLSECXREF].
4.1. Index by Fragment Index
The initial "http://www.w3.org/" part of the URI is not included
below. The first six entries have a null fragment identifier or no
fragment identifier. "{Bad}" indicates a Bad value that was
accidentally included in [RFC6931]. Implementations SHOULD only
generate the correct URI but SHOULD understand both the correct and
erroneous URI. See also Appendix B.
Fragment URI Sec/Doc
--------- ---- --------
2002/06/xmldsig-filter2 [XPATH]
2006/12/xmlc12n11# {Bad} [CANON11]
2006/12/xmlc14n11# [CANON11]
TR/1999/REC-xslt-19991116 [XSLT]
TR/1999/REC-xpath-19991116 [XPATH]
TR/2001/06/xml-exc-c14n# [XCANON]
TR/2001/REC-xml-c14n-20010315 [CANON10]
TR/2001/REC-xmlschema-1-20010502 [SCHEMA]
aes128-cbc 2001/04/xmlenc#aes128-cbc [XMLENC11]
aes128-gcm 2009/xmlenc11#aes128-gcm [XMLENC11]
aes192-cbc 2001/04/xmlenc#aes192-cbc [XMLENC11]
aes192-gcm 2009/xmlenc11#aes192-gcm [XMLENC11]
aes256-cbc 2001/04/xmlenc#aes256-cbc [XMLENC11]
aes256-gcm 2009/xmlenc11#aes256-gcm [XMLENC11]
arcfour 2001/04/xmldsig-more#arcfour 2.6.1
base64 2000/09/xmldsig#base64 [RFC3275]
camellia128-cbc 2001/04/xmldsig-more#camellia128-cbc 2.6.2
camellia192-cbc 2001/04/xmldsig-more#camellia192-cbc 2.6.2
camellia256-cbc 2001/04/xmldsig-more#camellia256-cbc 2.6.2
chacha20 2021/04/xmldsig-more#chacha20 2.6.7
chacha20poly1305 2021/04/xmldsig-more#chacha20poly1305 2.6.8
ConcatKDF 2009/xmlenc11#ConcatKDF [XMLENC11]
decrypt#XML 2002/07/decrypt#XML [DECRYPT]
decrypt#Binary 2002/07/decrypt#Binary [DECRYPT]
DEREncodedKeyValue 2009/xmldsig11#DEREncodedKeyValue [XMLDSIG11]
dh 2001/04/xmlenc#dh [XMLENC11]
dh-es 2009/xmlenc11#dh-es [XMLENC11]
dsa-sha1 2000/09/xmldsig#dsa-sha1 [RFC3275]
dsa-sha256 2009/xmldsig11#dsa-sha256 [XMLDSIG11]
DSAKeyValue 2000/09/xmldsig#DSAKeyValue [XMLDSIG11]
ECDH-ES 2009/xmlenc11#ECDH-ES [XMLENC11]
ecdsa-ripemd160 2007/05/xmldsig-more#ecdsa-ripemd160 2.3.6
ecdsa-sha1 2001/04/xmldsig-more#ecdsa-sha1 2.3.6
ecdsa-sha224 2001/04/xmldsig-more#ecdsa-sha224 2.3.6
ecdsa-sha256 2001/04/xmldsig-more#ecdsa-sha256 2.3.6
ecdsa-sha384 2001/04/xmldsig-more#ecdsa-sha384 2.3.6
ecdsa-sha512 2001/04/xmldsig-more#ecdsa-sha512 2.3.6
ecdsa-sha3-224 2021/04/xmldsig-more#ecdsa-sha3-224 2.3.6
ecdsa-sha3-256 2021/04/xmldsig-more#ecdsa-sha3-256 2.3.6
ecdsa-sha3-384 2021/04/xmldsig-more#ecdsa-sha3-384 2.3.6
ecdsa-sha3-512 2021/04/xmldsig-more#ecdsa-sha3-512 2.3.6
ecdsa-whirlpool 2007/05/xmldsig-more#ecdsa-whirlpool 2.3.5
ecies-kem 2010/xmlsec-ghc#ecies-kem [GENERIC]
ECKeyValue 2009/xmldsig11#ECKeyValue [XMLDSIG11]
eddsa-ed25519 2021/04/xmldsig-more#eddsa-ed25519 2.3.12
eddsa-ed25519ctx 2021/04/xmldsig-more#eddsa-ed25519ctx 2.3.12
eddsa-ed25519ph 2021/04/xmldsig-more#eddsa-ed25519ph 2.3.12
eddsa-ed448 2021/04/xmldsig-more#eddsa-ed448 2.3.12
eddsa-ed448ph 2021/04/xmldsig-more#eddsa-ed448ph 2.3.12
enveloped-signature 2000/09/xmldsig#enveloped-signature [RFC3275]
esign-sha1 2001/04/xmldsig-more#esign-sha1 2.3.7
esign-sha224 2001/04/xmldsig-more#esign-sha224 2.3.7
esign-sha256 2001/04/xmldsig-more#esign-sha256 2.3.7
esign-sha384 2001/04/xmldsig-more#esign-sha384 2.3.7
esign-sha512 2001/04/xmldsig-more#esign-sha512 2.3.7
generic-hybrid 2010/xmlsec-ghc#generic-hybrid [GENERIC]
hkdf 2021/04/xmldsig-more#hkdf 2.8.1
hmac-md5 2001/04/xmldsig-more#hmac-md5 2.2.1
hmac-ripemd160 2001/04/xmldsig-more#hmac-ripemd160 2.2.3
hmac-sha1 2000/09/xmldsig#hmac-sha1 [RFC3275]
hmac-sha224 2001/04/xmldsig-more#hmac-sha224 2.2.2
hmac-sha256 2001/04/xmldsig-more#hmac-sha256 2.2.2
hmac-sha384 2001/04/xmldsig-more#hmac-sha384 2.2.2
hmac-sha512 2001/04/xmldsig-more#hmac-sha512 2.2.2
KeyName 2001/04/xmldsig-more#KeyName 3.2
KeyValue 2001/04/xmldsig-more#KeyValue 3.2
kw-aes128 2001/04/xmlenc#kw-aes128 [XMLENC11]
kw-aes128-pad 2009/xmlenc11#kw-aes-128-pad [XMLENC11]
kw-aes192 2001/04/xmlenc#kw-aes192 [XMLENC11]
kw-aes192-pad 2009/xmlenc11#kw-aes-192-pad [XMLENC11]
kw-aes256 2001/04/xmlenc#kw-aes256 [XMLENC11]
kw-aes256-pad 2009/xmlenc11#kw-aes-256-pad [XMLENC11]
kw-camellia128 2001/04/xmldsig-more#kw-camellia128 2.6.3
kw-camellia192 2001/04/xmldsig-more#kw-camellia192 2.6.3
kw-camellia256 2001/04/xmldsig-more#kw-camellia256 2.6.3
kw-seed128 2007/05/xmldsig-more#kw-seed128 2.6.6
md2-rsa-MGF1 2007/05/xmldsig-more#md2-rsa-MGF1 2.3.10
md5 2001/04/xmldsig-more#md5 2.1.1
md5-rsa-MGF1 2007/05/xmldsig-more#md5-rsa-MGF1 2.3.10
MGF1 2007/05/xmldsig-more#MGF1 2.3.9
mgf1sha1 2009/xmlenc11#mgf1sha1 [XMLENC11]
mgf1sha224 2009/xmlenc11#mgf1sha224 [XMLENC11]
mgf1sha256 2009/xmlenc11#mgf1sha256 [XMLENC11]
mgf1sha384 2009/xmlenc11#mgf1sha384 [XMLENC11]
mgf1sha512 2009/xmlenc11#mgf1sha512 [XMLENC11]
MgmtData 2000/09/xmldsig#MgmtData [XMLDSIG11]
minimal 2000/09/xmldsig#minimal 2.4
pbkdf2 2009/xmlenc11#pbkdf2 [XMLENC11]
PGPData 2000/09/xmldsig#PGPData [XMLDSIG11]
PKCS7signedData 2001/04/xmldsig-more#PKCS7signedData 3.1
PKCS7signedData 2001/04/xmldsig-more#PKCS7signedData 3.2
poly1305 2021/04/xmldsig-more#poly1305 2.2.4
psec-kem 2001/04/xmldsig-more#psec-kem 2.6.4
rawPGPKeyPacket 2001/04/xmldsig-more#rawPGPKeyPacket 3.2
rawPKCS7signedData 2001/04/xmldsig-more#rawPKCS7signedData 3.2
rawSPKISexp 2001/04/xmldsig-more#rawSPKISexp 3.2
rawX509Certificate 2000/09/xmldsig#rawX509Certificate [RFC3275]
rawX509CRL 2001/04/xmldsig-more#rawX509CRL 3.2
RetrievalMethod 2001/04/xmldsig-more#RetrievalMethod 3.2
ripemd128-rsa-MGF1 2007/05/xmldsig-more#ripemd128-rsa-MGF1
ripemd160 2001/04/xmlenc#ripemd160 [XMLENC11]
ripemd160-rsa-MGF1 2007/05/xmldsig-more#ripemd160-rsa-MGF1
rsa-1_5 2001/04/xmlenc#rsa-1_5 [XMLENC11]
rsa-md5 2001/04/xmldsig-more#rsa-md5 2.3.1
rsa-oaep 2009/xmlenc11#rsa-oaep [XMLENC11]
rsa-oaep-mgf1p 2001/04/xmlenc#rsa-oaep-mgf1p [XMLENC11]
rsa-pss 2007/05/xmldsig-more#rsa-pss 2.3.9
rsa-ripemd160 2001/04/xmldsig-more#rsa-ripemd160 2.3.5
rsa-sha1 2000/09/xmldsig#rsa-sha1 [RFC3275]
rsa-sha224 2007/05/xmldsig-more#rsa-sha224 {Bad} 2.3.11
rsa-sha224 2001/04/xmldsig-more#rsa-sha224 2.3.11
rsa-sha256 2001/04/xmldsig-more#rsa-sha256 2.3.2
rsa-sha384 2001/04/xmldsig-more#rsa-sha384 2.3.3
rsa-sha512 2001/04/xmldsig-more#rsa-sha512 2.3.4
rsa-whirlpool 2007/05/xmldsig-more#rsa-whirlpool 2.3.5
rsaes-kem 2010/xmlsec-ghc#rsaes-kem [GENERIC]
RSAKeyValue 2000/09/xmldsig#RSAKeyValue [XMLDSIG11]
seed128-cbc 2007/05/xmldsig-more#seed128-cbc 2.6.5
sha1 2000/09/xmldsig#sha1 [RFC3275]
sha1-rsa-MGF1 2007/05/xmldsig-more#sha1-rsa-MGF1 2.3.10
sha224 2001/04/xmldsig-more#sha224 2.1.2
sha224-rsa-MGF1 2007/05/xmldsig-more#sha224-rsa-MGF1 2.3.10
sha256 2001/04/xmlenc#sha256 [XMLENC11]
sha256-rsa-MGF1 2007/05/xmldsig-more#sha256-rsa-MGF1 2.3.10
sha3-224 2007/05/xmldsig-more#sha3-224 2.1.5
sha3-224-rsa-MGF1 2007/05/xmldsig-more#sha3-224-rsa-MGF1 2.3.10
sha3-256 2007/05/xmldsig-more#sha3-256 2.1.5
sha3-256-rsa-MGF1 2007/05/xmldsig-more#sha3-256-rsa-MGF1 2.3.10
sha3-384 2007/05/xmldsig-more#sha3-384 2.1.5
sha3-384-rsa-MGF1 2007/05/xmldsig-more#sha3-384-rsa-MGF1 2.3.10
sha3-512 2007/05/xmldsig-more#sha3-512 2.1.5
sha3-512-rsa-MGF1 2007/05/xmldsig-more#sha3-512-rsa-MGF1 2.3.10
sha384 2001/04/xmldsig-more#sha384 2.1.3
sha384-rsa-MGF1 2007/05/xmldsig-more#sha384-rsa-MGF1 2.3.10
sha512 2001/04/xmlenc#sha512 [XMLENC11]
sha512-rsa-MGF1 2007/05/xmldsig-more#sha512-rsa-MGF1 2.3.10
siphash-2-4 2021/04/xmldsig-more#siphash-2-4 2.2.5
SPKIData 2000/09/xmldsig#SPKIData [XMLDSIG11]
tripledes-cbc 2001/04/xmlenc#tripledes-cbc [XMLENC11]
whirlpool 2007/05/xmldsig-more#whirlpool 2.1.4
whirlpool-rsa-MGF1 2007/05/xmldsig-more#whirlpool-rsa-MGF1
WithComments 2006/12/xmlc14n11#WithComments [CANON11]
WithComments TR/2001/06/xml-exc-c14n#WithComments
WithComments TR/2001/REC-xml-c14n-20010315#WithComments
x25519 2021/04/xmldsig-more#x25519 2.7.1
x448 2021/04/xmldsig-more#x448 2.7.1
X509Data 2000/09/xmldsig#X509Data [XMLDSIG11]
xmss-sha2-10-192 2021/04/xmldsig-more#xmss-sha2-10-192 2.2.6
xmss-sha2-10-256 2021/04/xmldsig-more#xmss-sha2-10-256 2.2.6
xmss-sha2-10-512 2021/04/xmldsig-more#xmss-sha2-10-512 2.2.6
xmss-sha2-16-192 2021/04/xmldsig-more#xmss-sha2-16-192 2.2.6
xmss-sha2-16-256 2021/04/xmldsig-more#xmss-sha2-16-256 2.2.6
xmss-sha2-16-512 2021/04/xmldsig-more#xmss-sha2-16-512 2.2.6
xmss-sha2-20-192 2021/04/xmldsig-more#xmss-sha2-20-192 2.2.6
xmss-sha2-20-256 2021/04/xmldsig-more#xmss-sha2-20-256 2.2.6
xmss-sha2-20-512 2021/04/xmldsig-more#xmss-sha2-20-512 2.2.6
xmss-shake-10-256 2021/04/xmldsig-more#xmss-shake-10-256 2.2.6
xmss-shake-10-512 2021/04/xmldsig-more#xmss-shake-10-512 2.2.6
xmss-shake-16-256 2021/04/xmldsig-more#xmss-shake-16-256 2.2.6
xmss-shake-16-512 2021/04/xmldsig-more#xmss-shake-16-512 2.2.6
xmss-shake-20-256 2021/04/xmldsig-more#xmss-shake-20-256 2.2.6
xmss-shake-20-512 2021/04/xmldsig-more#xmss-shake-20-512 2.2.6
xmss-shake256-10-192 2021/04/xmldsig-more#xmss-shake256-10-192
xmss-shake256-10-256 2021/04/xmldsig-more#xmss-shake256-10-256
xmss-shake256-16-192 2021/04/xmldsig-more#xmss-shake256-16-192
xmss-shake256-16-256 2021/04/xmldsig-more#xmss-shake256-16-256
xmss-shake256-20-192 2021/04/xmldsig-more#xmss-shake256-20-192
xmss-shake256-20-256 2021/04/xmldsig-more#xmss-shake256-20-256
xmssmt-sha2-20-2-192 2021/04/xmldsig-more#xmssmt-sha2-20-2-192
xmssmt-sha2-20-2-256 2021/04/xmldsig-more#xmssmt-sha2-20-2-256
xmssmt-sha2-20-2-256 2021/04/xmldsig-more#xmssmt-sha2-20-2-512
xmssmt-sha2-20-4-192 2021/04/xmldsig-more#xmssmt-sha2-20-4-192
xmssmt-sha2-20-4-256 2021/04/xmldsig-more#xmssmt-sha2-20-4-256
xmssmt-sha2-20-4-256 2021/04/xmldsig-more#xmssmt-sha2-20-4-512
xmssmt-sha2-40-2-192 2021/04/xmldsig-more#xmssmt-sha2-40-2-192
xmssmt-sha2-40-2-256 2021/04/xmldsig-more#xmssmt-sha2-40-2-256
xmssmt-sha2-40-2-256 2021/04/xmldsig-more#xmssmt-sha2-40-2-512
xmssmt-sha2-40-4-192 2021/04/xmldsig-more#xmssmt-sha2-40-4-192
xmssmt-sha2-40-4-256 2021/04/xmldsig-more#xmssmt-sha2-40-4-256
xmssmt-sha2-40-4-256 2021/04/xmldsig-more#xmssmt-sha2-40-4-512
xmssmt-sha2-40-8-192 2021/04/xmldsig-more#xmssmt-sha2-40-8-192
xmssmt-sha2-40-8-256 2021/04/xmldsig-more#xmssmt-sha2-40-8-256
xmssmt-sha2-40-8-256 2021/04/xmldsig-more#xmssmt-sha2-40-8-512
xmssmt-sha2-60-3-192 2021/04/xmldsig-more#xmssmt-sha2-60-3-192
xmssmt-sha2-60-3-256 2021/04/xmldsig-more#xmssmt-sha2-60-3-256
xmssmt-sha2-60-3-256 2021/04/xmldsig-more#xmssmt-sha2-60-3-512
xmssmt-sha2-60-6-192 2021/04/xmldsig-more#xmssmt-sha2-60-6-192
xmssmt-sha2-60-6-256 2021/04/xmldsig-more#xmssmt-sha2-60-6-256
xmssmt-sha2-60-6-256 2021/04/xmldsig-more#xmssmt-sha2-60-6-512
xmssmt-sha2-60-12-192 2021/04/xmldsig-more#xmssmt-sha2-60-12-192
xmssmt-sha2-60-12-256 2021/04/xmldsig-more#xmssmt-sha2-60-12-256
xmssmt-sha2-60-12-256 2021/04/xmldsig-more#xmssmt-sha2-60-12-512
xmssmt-shake-20-2-256 2021/04/xmldsig-more#xmssmt-shake-20-2-256
xmssmt-shake-20-2-512 2021/04/xmldsig-more#xmssmt-shake-20-2-512
xmssmt-shake-20-4-256 2021/04/xmldsig-more#xmssmt-shake-20-4-256
xmssmt-shake-20-4-512 2021/04/xmldsig-more#xmssmt-shake-20-4-512
xmssmt-shake-40-2-256 2021/04/xmldsig-more#xmssmt-shake-40-2-256
xmssmt-shake-40-2-512 2021/04/xmldsig-more#xmssmt-shake-40-2-512
xmssmt-shake-40-4-256 2021/04/xmldsig-more#xmssmt-shake-40-4-256
xmssmt-shake-40-4-512 2021/04/xmldsig-more#xmssmt-shake-40-4-512
xmssmt-shake-40-8-256 2021/04/xmldsig-more#xmssmt-shake-40-8-256
xmssmt-shake-40-8-512 2021/04/xmldsig-more#xmssmt-shake-40-8-512
xmssmt-shake-60-3-256 2021/04/xmldsig-more#xmssmt-shake-60-3-256
xmssmt-shake-60-3-512 2021/04/xmldsig-more#xmssmt-shake-60-3-512
xmssmt-shake-60-6-256 2021/04/xmldsig-more#xmssmt-shake-60-6-256
xmssmt-shake-60-6-512 2021/04/xmldsig-more#xmssmt-shake-60-6-512
xmssmt-shake-60-12-256 2021/04/xmldsig-more#xmssmt-shake-20-12-256
xmssmt-shake-60-12-512 2021/04/xmldsig-more#xmssmt-shake-20-12-512
2021/04/xmldsig-more#xmssmt-shake256-20-2-192 2.2.6
2021/04/xmldsig-more#xmssmt-shake256-20-2-256 2.2.6
2021/04/xmldsig-more#xmssmt-shake256-20-4-192 2.2.6
2021/04/xmldsig-more#xmssmt-shake256-20-4-256 2.2.6
2021/04/xmldsig-more#xmssmt-shake256-40-2-192 2.2.6
2021/04/xmldsig-more#xmssmt-shake256-40-2-256 2.2.6
2021/04/xmldsig-more#xmssmt-shake256-40-4-192 2.2.6
2021/04/xmldsig-more#xmssmt-shake256-40-4-256 2.2.6
2021/04/xmldsig-more#xmssmt-shake256-40-8-192 2.2.6
2021/04/xmldsig-more#xmssmt-shake256-40-8-256 2.2.6
2021/04/xmldsig-more#xmssmt-shake256-60-3-192 2.2.6
2021/04/xmldsig-more#xmssmt-shake256-60-3-256 2.2.6
2021/04/xmldsig-more#xmssmt-shake256-60-6-192 2.2.6
2021/04/xmldsig-more#xmssmt-shake256-60-6-256 2.2.6
2021/04/xmldsig-more#xmssmt-shake256-60-12-192 2.2.6
2021/04/xmldsig-more#xmssmt-shake256-60-12-256 2.2.6
xptr 2001/04/xmldsig-more#xptr 2.5.1
--------- ---- --------
Fragment URI Sec/Doc
The initial "http://www.w3.org/" part of the URI is not included
4.2. Index by URI
The initial "http://www.w3.org/" part of the URI is not included
below. "{Bad}" indicates a Bad value that was accidentally included
in [RFC6931]. Implementations SHOULD only generate the correct URI
but SHOULD understand both the correct and erroneous URI. See also
Appendix B.
URI Sec/Doc Type
---- -------- ------
2000/09/xmldsig#base64 [RFC3275] Transform
2000/09/xmldsig#DSAKeyValue [RFC3275] Retrieval type
2000/09/xmldsig#dsa-sha1 [RFC3275] SignatureMethod
2000/09/xmldsig#enveloped-signature [RFC3275] Transform
2000/09/xmldsig#hmac-sha1 [RFC3275] SignatureMethod
2000/09/xmldsig#MgmtData [RFC3275] Retrieval type
2000/09/xmldsig#minimal 2.4 Canonicalization
2000/09/xmldsig#PGPData [RFC3275] Retrieval type
2000/09/xmldsig#rawX509Certificate [RFC3275] Retrieval type
2000/09/xmldsig#rsa-sha1 [RFC3275] SignatureMethod
2000/09/xmldsig#RSAKeyValue [RFC3275] Retrieval type
2000/09/xmldsig#sha1 [RFC3275] DigestAlgorithm
2000/09/xmldsig#SPKIData [RFC3275] Retrieval type
2000/09/xmldsig#X509Data [RFC3275] Retrieval type
2001/04/xmldsig-more#arcfour 2.6.1 EncryptionMethod
2001/04/xmldsig-more#camellia128-cbc 2.6.2 EncryptionMethod
2001/04/xmldsig-more#camellia192-cbc 2.6.2 EncryptionMethod
2001/04/xmldsig-more#camellia256-cbc 2.6.2 EncryptionMethod
2001/04/xmldsig-more#ecdsa-sha1 2.3.6 SignatureMethod
2001/04/xmldsig-more#ecdsa-sha224 2.3.6 SignatureMethod
2001/04/xmldsig-more#ecdsa-sha256 2.3.6 SignatureMethod
2001/04/xmldsig-more#ecdsa-sha384 2.3.6 SignatureMethod
2001/04/xmldsig-more#ecdsa-sha512 2.3.6 SignatureMethod
2001/04/xmldsig-more#esign-sha1 2.3.7 SignatureMethod
2001/04/xmldsig-more#esign-sha224 2.3.7 SignatureMethod
2001/04/xmldsig-more#esign-sha256 2.3.7 SignatureMethod
2001/04/xmldsig-more#esign-sha384 2.3.7 SignatureMethod
2001/04/xmldsig-more#esign-sha512 2.3.7 SignatureMethod
2001/04/xmldsig-more#hmac-md5 2.2.1 SignatureMethod
2001/04/xmldsig-more#hmac-ripemd160 2.2.3 SignatureMethod
2001/04/xmldsig-more#hmac-sha224 2.2.2 SignatureMethod
2001/04/xmldsig-more#hmac-sha256 2.2.2 SignatureMethod
2001/04/xmldsig-more#hmac-sha384 2.2.2 SignatureMethod
2001/04/xmldsig-more#hmac-sha512 2.2.2 SignatureMethod
2001/04/xmldsig-more#KeyName 3.2 Retrieval type
2001/04/xmldsig-more#KeyValue 3.2 Retrieval type
2001/04/xmldsig-more#kw-camellia128 2.6.3 EncryptionMethod
2001/04/xmldsig-more#kw-camellia192 2.6.3 EncryptionMethod
2001/04/xmldsig-more#kw-camellia256 2.6.3 EncryptionMethod
2001/04/xmldsig-more#md5 2.1.1 DigestAlgorithm
2001/04/xmldsig-more#PKCS7signedData 3.2 Retrieval type
2001/04/xmldsig-more#psec-kem 2.6.4 EncryptionMethod
2001/04/xmldsig-more#rawPGPKeyPacket 3.2 Retrieval type
2001/04/xmldsig-more#rawPKCS7signedData 3.2 Retrieval type
2001/04/xmldsig-more#rawSPKISexp 3.2 Retrieval type
2001/04/xmldsig-more#rawX509CRL 3.2 Retrieval type
2001/04/xmldsig-more#RetrievalMethod 3.2 Retrieval type
2001/04/xmldsig-more#rsa-md5 2.3.1 SignatureMethod
2001/04/xmldsig-more#rsa-sha224 2.3.11 SignatureMethod
2001/04/xmldsig-more#rsa-sha256 2.3.2 SignatureMethod
2001/04/xmldsig-more#rsa-sha384 2.3.3 SignatureMethod
2001/04/xmldsig-more#rsa-sha512 2.3.4 SignatureMethod
2001/04/xmldsig-more#rsa-ripemd160 2.3.5 SignatureMethod
2001/04/xmldsig-more#sha224 2.1.2 DigestAlgorithm
2001/04/xmldsig-more#sha384 2.1.3 DigestAlgorithm
2001/04/xmldsig-more#xptr 2.5.1 Transform
2001/04/xmldsig-more#PKCS7signedData 3.1 KeyInfo child
2001/04/xmlenc#aes128-cbc [XMLENC11] EncryptionMethod
2001/04/xmlenc#aes192-cbc [XMLENC11] EncryptionMethod
2001/04/xmlenc#aes256-cbc [XMLENC11] EncryptionMethod
2001/04/xmlenc#dh [XMLENC11] AgreementMethod
2001/04/xmlenc#kw-aes128 [XMLENC11] EncryptionMethod
2001/04/xmlenc#kw-aes192 [XMLENC11] EncryptionMethod
2001/04/xmlenc#kw-aes256 [XMLENC11] EncryptionMethod
2001/04/xmlenc#ripemd160 [XMLENC11] DigestAlgorithm
2001/04/xmlenc#rsa-1_5 [XMLENC11] EncryptionMethod
2001/04/xmlenc#rsa-oaep-mgf1p [XMLENC11] EncryptionMethod
2001/04/xmlenc#sha256 [XMLENC11] DigestAlgorithm
2001/04/xmlenc#sha512 [XMLENC11] DigestAlgorithm
2001/04/xmlenc#tripledes-cbc [XMLENC11] EncryptionMethod
2002/06/xmldsig-filter2 [XPATH] Transform
2002/07/decrypt#XML [DECRYPT] Transform
2002/07/decrypt#Binary [DECRYPT] Transform
2006/12/xmlc12n11# {Bad} [CANON11] Canonicalization
2006/12/xmlc14n11# [CANON11] Canonicalization
2006/12/xmlc14n11#WithComments [CANON11] Canonicalization
2007/05/xmldsig-more#ecdsa-ripemd160 2.3.6 SignatureMethod
2007/05/xmldsig-more#ecdsa-whirlpool 2.3.5 SignatureMethod
2007/05/xmldsig-more#kw-seed128 2.6.6 EncryptionMethod
2007/05/xmldsig-more#md2-rsa-MGF1 2.3.10 SignatureMethod
2007/05/xmldsig-more#md5-rsa-MGF1 2.3.10 SignatureMethod
2007/05/xmldsig-more#MGF1 2.3.9 SignatureMethod
2007/05/xmldsig-more#ripemd128-rsa-MGF1 2.3.10 SignatureMethod
2007/05/xmldsig-more#ripemd160-rsa-MGF1 2.3.10 SignatureMethod
2007/05/xmldsig-more#rsa-pss 2.3.9 SignatureMethod
2007/05/xmldsig-more#rsa-sha224 {Bad} 2.3.11 SignatureMethod
2007/05/xmldsig-more#rsa-whirlpool 2.3.5 SignatureMethod
2007/05/xmldsig-more#seed128-cbc 2.6.5 EncryptionMethod
2007/05/xmldsig-more#sha1-rsa-MGF1 2.3.10 SignatureMethod
2007/05/xmldsig-more#sha224-rsa-MGF1 2.3.10 SignatureMethod
2007/05/xmldsig-more#sha256-rsa-MGF1 2.3.10 SignatureMethod
2007/05/xmldsig-more#sha3-224 2.1.5 DigestAlgorithm
2007/05/xmldsig-more#sha3-224-rsa-MGF1 2.3.10 SignatureMethod
2007/05/xmldsig-more#sha3-256 2.1.5 DigestAlgorithm
2007/05/xmldsig-more#sha3-256-rsa-MGF1 2.3.10 SignatureMethod
2007/05/xmldsig-more#sha3-384 2.1.5 DigestAlgorithm
2007/05/xmldsig-more#sha3-384-rsa-MGF1 2.3.10 SignatureMethod
2007/05/xmldsig-more#sha3-512 2.1.5 DigestAlgorithm
2007/05/xmldsig-more#sha3-512-rsa-MGF1 2.3.10 SignatureMethod
2007/05/xmldsig-more#sha384-rsa-MGF1 2.3.10 SignatureMethod
2007/05/xmldsig-more#sha512-rsa-MGF1 2.3.10 SignatureMethod
2007/05/xmldsig-more#whirlpool 2.1.4 DigestAlgorithm
2007/05/xmldsig-more#whirlpool-rsa-MGF1 2.3.10 SignatureMethod
2009/xmlenc11#kw-aes-128-pad [XMLENC11] EncryptionMethod
2009/xmlenc11#kw-aes-192-pad [XMLENC11] EncryptionMethod
2009/xmlenc11#kw-aes-256-pad [XMLENC11] EncryptionMethod
2009/xmldsig11#dsa-sha256 [XMLDSIG11] SignatureMethod
2009/xmldsig11#ECKeyValue [XMLDSIG11] Retrieval type
2009/xmldsig11#DEREncodedKeyValue [XMLDSIG11] Retrieval type
2009/xmlenc11#aes128-gcm [XMLENC11] EncryptionMethod
2009/xmlenc11#aes192-gcm [XMLENC11] EncryptionMethod
2009/xmlenc11#aes256-gcm [XMLENC11] EncryptionMethod
2009/xmlenc11#ConcatKDF [XMLENC11] KeyDerivation
2009/xmlenc11#mgf1sha1 [XMLENC11] SignatureMethod
2009/xmlenc11#mgf1sha224 [XMLENC11] SignatureMethod
2009/xmlenc11#mgf1sha256 [XMLENC11] SignatureMethod
2009/xmlenc11#mgf1sha384 [XMLENC11] SignatureMethod
2009/xmlenc11#mgf1sha512 [XMLENC11] SignatureMethod
2009/xmlenc11#pbkdf2 [XMLENC11] KeyDerivation
2009/xmlenc11#rsa-oaep [XMLENC11] EncryptionMethod
2009/xmlenc11#ECDH-ES [XMLENC11] AgreementMethod
2009/xmlenc11#dh-es [XMLENC11] EncryptionMethod
2010/xmlsec-ghc#generic-hybrid [GENERIC] Generic Hybrid
2010/xmlsec-ghc#rsaes-kem [GENERIC] Generic Hybrid
2010/xmlsec-ghc#ecies-kem [GENERIC] Generic Hybrid
2021/04/xmldsig-more#chacha20 2.6.7 EncryptionMethod
2021/04/xmldsig-more#chacha20poly1305 2.6.8 EncryptionMethod
2021/04/xmldsig-more#ecdsa-sha3-224 2.3.6 SignatureMethod
2021/04/xmldsig-more#ecdsa-sha3-256 2.3.6 SignatureMethod
2021/04/xmldsig-more#ecdsa-sha3-384 2.3.6 SignatureMethod
2021/04/xmldsig-more#ecdsa-sha3-512 2.3.6 SignatureMethod
2021/04/xmldsig-more#eddsa-ed25519ph 2.3.12 SignatureMethod
2021/04/xmldsig-more#eddsa-ed25519ctx 2.3.12 SignatureMethod
2021/04/xmldsig-more#eddsa-ed25519 2.3.12 SignatureMethod
2021/04/xmldsig-more#eddsa-ed448 2.3.12 SignatureMethod
2021/04/xmldsig-more#eddsa-ed448ph 2.3.12 SignatureMethod
2021/04/xmldsig-more#hkdf 2.8.1 KeyDerivation
2021/04/xmldsig-more#po1y305 2.2.4 SignatureMethod
2021/04/xmldsig-more#siphash-2-4 2.2.5 SignatureMethod
2021/04/xmldsig-more#x25519 2.7.1 AgreementMethod
2021/04/xmldsig-more#x448 2.7.1 AgreementMethod
2021/04/xmldsig-more#xmss-sha2-10-192 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmss-sha2-10-256 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmss-sha2-10-512 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmss-sha2-16-192 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmss-sha2-16-256 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmss-sha2-16-512 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmss-sha2-20-192 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmss-sha2-20-256 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmss-sha2-20-512 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmss-shake-10-256 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmss-shake-10-512 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmss-shake-16-256 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmss-shake-16-512 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmss-shake-20-256 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmss-shake-20-512 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmss-shake256-10-192 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmss-shake256-10-256 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmss-shake256-16-192 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmss-shake256-16-256 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmss-shake256-20-192 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmss-shake256-20-256 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-sha2-20-2-192 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-sha2-20-2-256 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-sha2-20-2-512 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-sha2-20-4-192 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-sha2-20-4-256 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-sha2-20-4-512 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-sha2-40-2-192 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-sha2-40-2-256 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-sha2-40-2-512 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-sha2-40-4-192 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-sha2-40-4-256 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-sha2-40-4-512 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-sha2-40-8-192 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-sha2-40-8-256 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-sha2-40-8-512 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-sha2-60-3-192 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-sha2-60-3-256 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-sha2-60-3-512 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-sha2-60-6-192 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-sha2-60-6-256 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-sha2-60-6-512 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-sha2-60-12-192 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-sha2-60-12-256 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-sha2-60-12-512 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-shake-20-2-256 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-shake-20-2-512 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-shake-20-4-256 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-shake-20-4-512 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-shake-40-2-256 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-shake-40-2-512 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-shake-40-4-256 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-shake-40-4-512 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-shake-40-8-256 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-shake-40-8-512 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-shake-60-3-256 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-shake-60-3-512 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-shake-60-6-256 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-shake-60-6-512 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-shake-60-12-256 2.2.6 SignatureMethod
2021/04/xmldsig-more#xmssmt-shake-60-12-512 2.2.6 SignatureMethod
2.2.6 SignatureMethod
2.2.6 SignatureMethod
2.2.6 SignatureMethod
2.2.6 SignatureMethod
2.2.6 SignatureMethod
2.2.6 SignatureMethod
2.2.6 SignatureMethod
2.2.6 SignatureMethod
2.2.6 SignatureMethod
2.2.6 SignatureMethod
2.2.6 SignatureMethod
2.2.6 SignatureMethod
2.2.6 SignatureMethod
2.2.6 SignatureMethod
2.2.6 SignatureMethod
2.2.6 SignatureMethod
TR/1999/REC-xpath-19991116 [XPATH] Transform
TR/1999/REC-xslt-19991116 [XSLT] Transform
TR/2001/06/xml-exc-c14n# [XCANON] Canonicalization
TR/2001/06/xml-exc-c14n#WithComments [XCANON] Canonicalization
TR/2001/REC-xml-c14n-20010315 [CANON10] Canonicalization
[CANON10] Canonicalization
TR/2001/REC-xmlschema-1-20010502 [SCHEMA] Transform
---- -------- ------
URI Sec/Doc Type
The initial "http://www.w3.org/" part of the URI is not included
above. "{Bad}" indicates a Bad value that was accidentally included
in [RFC6931]. Implementations SHOULD only generate the correct URI
but SHOULD understand both the correct and erroneous URI. See also
Appendix B.
5. Allocation Considerations
W3C and IANA allocation considerations are given below.
5.1. W3C Allocation Considerations
As it is easy for people to construct their own unique URIs [RFC3986]
and, if appropriate, to obtain a URI from the W3C, additional URI
specification under the following XMLSEC URI prefixes is prohibited
as shown:
| URI | Status |
| <http://www.w3.org/2000/09/xmldsig#> | Frozen by W3C. |
| <http://www.w3.org/2001/04/xmldsig-more#> | Frozen with |
| | RFC 4051. |
| <http://www.w3.org/2007/05/xmldsig-more#> | Frozen with |
| | [RFC6931]. |
Table 2
The W3C has assigned <http://www.w3.org/2021/04/xmldsig-more#> for
additional new URIs specified in this document.
There are also occurrences in this document of
<http://www.w3.org/2010/xmlsec-ghc#> due to the inclusion of some
algorithms from [GENERIC] for convenience.
An "xmldsig-more" URI does not imply any official W3C or IETF status
for these algorithms or identifiers nor does it imply that they are
only useful in digital signatures. Currently, dereferencing such
URIs may or may not produce a temporary placeholder document.
Permission to use these URI prefixes has been given by the W3C.
5.2. IANA Considerations
IANA has established a registry entitled "XML Security URIs". The
contents will be updated to correspond to Section 4.2 of this
document with each section number in the "Sec/Doc" column augmented
with a reference to this RFC (for example, "2.6.4" means "[this
document], Section 2.6.4"). All references to [RFC6931] in that
registry should be updated to [this document].
New entries, including new Types, will be added based on
Specification Required [RFC8126]. Criteria for the designated expert
for inclusion are (1) documentation sufficient for interoperability
of the algorithm or data type and the XML syntax for its
representation and use and (2) sufficient importance as normally
indicated by inclusion in (2a) an approved W3C Note, Proposed
Recommendation, or Recommendation, or (2b) an approved IETF RFC.
Typically, the registry will reference a W3C or IETF document
specifying such XML syntax; that document will either contain a more
detailed description of the algorithm or data type or reference
another document with a more detailed description.
6. Security Considerations
This RFC is concerned with documenting the URIs that designate
algorithms and some data types used in connection with XML security.
The security considerations vary widely with the particular
algorithms, and the general security considerations for XML security
are outside of the scope of this document but appear in [XMLDSIG11],
[XMLENC11], [CANON10], [CANON11], and [GENERIC].
[RFC6151] should be consulted before considering the use of MD5 as a
DigestMethod or the use of HMAC-MD5 or RSA-MD5 as a SignatureMethod.
See [RFC6194] for SHA-1 security considerations.
Additional security considerations are given in connection with the
description of some algorithms in the body of this document.
Implementers should be aware that cryptographic algorithms become
weaker with time. As new cryptoanalysis techniques are developed and
computing performance improves, the work factor to break a particular
cryptographic algorithm will decrease. Therefore, cryptographic
implementations should be modular, allowing new algorithms to be
readily inserted. That is, implementers should be prepared for the
set of mandatory-to-implement algorithms for any particular use to
change over time. This is sometimes referred to as "algorithm
agility" [RFC7696].
7. References
7.1. Normative References
National Institute of Standards and Technology (NIST),
"Secure Hash Standard (SHS)", DOI 10.6028/NIST.FIPS.180-4,
FIPS 180-4, August 2015,
National Institute of Standards and Technology (NIST),
"Digital Signature Standard (DSS)", FIPS 186-4,
DOI 10.6028/NIST.FIPS.186-4, July 2013,
[FIPS202] National Institute of Standards and Technology (NIST),
"SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions", FIPS 202, DOI 10.6028/NIST.FIPS.202,
August 2015, <https://nvlpubs.nist.gov/nistpubs/FIPS/
National Institute of Standards and Technology (NIST),
"Recommendation for Stateful Hash-Based Signature
Schemes", NIST 800-208, DOI 10.6028/NIST.SP.800-208,
October 2020,
Institute of Electrical and Electronics Engineers, "IEEE
Standard Specifications for Public-Key Cryptography -
Amendment 1: Additional Techniques", IEEE Std 1363a-2004,
ISO, "Information technology -- Security techniques --
Hash-functions -- Part 3: Dedicated hash-functions", ISO/
IEC 10118-3:2004, 2004.
ISO, "Information technology -- Security techniques
--Encryption algorithms -- Part 3: Asymmetric ciphers",
ISO/IEC 18033-2:2010, 2010.
[RC4] Schneier, B., "Applied Cryptography: Protocols,
Algorithms, and Source Code in C, Second Edition", John
Wiley and Sons, New York, NY , 1996.
[RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
DOI 10.17487/RFC1321, April 1992,
[RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
Hashing for Message Authentication", RFC 2104,
DOI 10.17487/RFC2104, February 1997,
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
[RFC2315] Kaliski, B., "PKCS #7: Cryptographic Message Syntax
Version 1.5", RFC 2315, DOI 10.17487/RFC2315, March 1998,
[RFC3275] Eastlake 3rd, D., Reagle, J., and D. Solo, "(Extensible
Markup Language) XML-Signature Syntax and Processing",
RFC 3275, DOI 10.17487/RFC3275, March 2002,
[RFC3394] Schaad, J. and R. Housley, "Advanced Encryption Standard
(AES) Key Wrap Algorithm", RFC 3394, DOI 10.17487/RFC3394,
September 2002, <https://www.rfc-editor.org/info/rfc3394>.
[RFC3713] Matsui, M., Nakajima, J., and S. Moriai, "A Description of
the Camellia Encryption Algorithm", RFC 3713,
DOI 10.17487/RFC3713, April 2004,
[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", STD 66,
RFC 3986, DOI 10.17487/RFC3986, January 2005,
[RFC4050] Blake-Wilson, S., Karlinger, G., Kobayashi, T., and Y.
Wang, "Using the Elliptic Curve Signature Algorithm
(ECDSA) for XML Digital Signatures", RFC 4050,
DOI 10.17487/RFC4050, April 2005,
[RFC4055] Schaad, J., Kaliski, B., and R. Housley, "Additional
Algorithms and Identifiers for RSA Cryptography for use in
the Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile", RFC 4055,
DOI 10.17487/RFC4055, June 2005,
[RFC4269] Lee, H.J., Lee, S.J., Yoon, J.H., Cheon, D.H., and J.I.
Lee, "The SEED Encryption Algorithm", RFC 4269,
DOI 10.17487/RFC4269, December 2005,
[RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
[RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
Key Derivation Function (HKDF)", RFC 5869,
DOI 10.17487/RFC5869, May 2010,
[RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
(SHA and SHA-based HMAC and HKDF)", RFC 6234,
DOI 10.17487/RFC6234, May 2011,
[RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
for Security", RFC 7748, DOI 10.17487/RFC7748, January
2016, <https://www.rfc-editor.org/info/rfc7748>.
[RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
"PKCS #1: RSA Cryptography Specifications Version 2.2",
RFC 8017, DOI 10.17487/RFC8017, November 2016,
[RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
Signature Algorithm (EdDSA)", RFC 8032,
DOI 10.17487/RFC8032, January 2017,
[RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
Writing an IANA Considerations Section in RFCs", BCP 26,
RFC 8126, DOI 10.17487/RFC8126, June 2017,
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8391] Huelsing, A., Butin, D., Gazdag, S., Rijneveld, J., and A.
Mohaisen, "XMSS: eXtended Merkle Signature Scheme",
RFC 8391, DOI 10.17487/RFC8391, May 2018,
[RFC8439] Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF
Protocols", RFC 8439, DOI 10.17487/RFC8439, June 2018,
[SipHash1] Aumasson, J. and D. Bernstein, "SipHash: A Fast Short-
Input PRF", Progress in Cryptology - INDOCRYPT 2012,
Lecture Notes in Computer Science vol. 7668, December
2012, <https://doi.org/10.1007/978-3-642-34931-7_28>.
[X9.62] American National Standards Institute, Accredited
Standards Committee X9, "Public Key Cryptography for the
Financial Services Industry: The Elliptic Curve Digital
Signature Algorithm (ECDSA)", ANSI X9.62:2005, 2005.
[XMLENC10] Reagle, J. and D. Eastlake 3rd, "XML Encryption Syntax and
Processing", W3C Recommendation, December 2002,
[XMLENC11] Eastlake 3rd, D., Reagle, J., Hirsch, F., and T. Roessler,
"XML Encryption Syntax and Processing Version 1.1",
W3C Proposed Recommendation, April 2013,
[XPointer] Grosso, P., Maler, E., Marsh, J., and N. Walsh, "XPointer
Framework", W3C Recommendation, March 2003,
7.2. Informational References
[CAMELLIA] Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S.,
Nakajima, J., and T. Tokita, "Camellia: A 128-Bit Block
Cipher Suitable for Multiple Platforms -- Design and
Analysis", In Selected Areas in Cryptography, 7th Annual
International Workshop, SAC 2000, August 2000.
[CANON10] Boyer, J., "Canonical XML Version 1.0",
W3C Recommendation, March 2001,
[CANON11] Boyer, J. and G. Marcy, "Canonical XML Version 1.1",
W3C Recommendation, May 2008,
[ChaCha] Bernstein, D., "ChaCha, a variant of Salsa20", January
2008, <https://cr.yp.to/chacha/chacha-20080128.pdf>.
[DECRYPT] Hughes, M., Imamura, T., and H. Maruyama, "Decryption
Transform for XML Signature", W3C Recommendation, December
[Err3597] RFC Errata, "Erratum ID 3597", RFC 6931,
[Err3965] RFC Errata, "Erratum ID 3965", RFC 6931,
[Err4004] RFC Errata, "Erratum ID 4004", RFC 6931,
[GENERIC] Nyström, M. and F. Hirsch, "XML Security Generic Hybrid
Ciphers", W3C Working Group Note, April 2013,
[KECCAK] Bertoni, G., Daeman, J., Peeters, M., and G. Van Assche,
"The KECCAK sponge function family", January 2013,
[POLY1305] Bernstein, D., "The Poly1305-AES message-authentication
code", March 2005,
[RFC3075] Eastlake 3rd, D., Reagle, J., and D. Solo, "XML-Signature
Syntax and Processing", RFC 3075, DOI 10.17487/RFC3075,
March 2001, <https://www.rfc-editor.org/info/rfc3075>.
[RFC3076] Boyer, J., "Canonical XML Version 1.0", RFC 3076,
DOI 10.17487/RFC3076, March 2001,
[RFC3092] Eastlake 3rd, D., Manros, C., and E. Raymond, "Etymology
of "Foo"", RFC 3092, DOI 10.17487/RFC3092, April 2001,
[RFC3741] Boyer, J., Eastlake 3rd, D., and J. Reagle, "Exclusive XML
Canonicalization, Version 1.0", RFC 3741,
DOI 10.17487/RFC3741, March 2004,
[RFC4010] Park, J., Lee, S., Kim, J., and J. Lee, "Use of the SEED
Encryption Algorithm in Cryptographic Message Syntax
(CMS)", RFC 4010, DOI 10.17487/RFC4010, February 2005,
[RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
Curve Cryptography Algorithms", RFC 6090,
DOI 10.17487/RFC6090, February 2011,
[RFC6151] Turner, S. and L. Chen, "Updated Security Considerations
for the MD5 Message-Digest and the HMAC-MD5 Algorithms",
RFC 6151, DOI 10.17487/RFC6151, March 2011,
[RFC6194] Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security
Considerations for the SHA-0 and SHA-1 Message-Digest
Algorithms", RFC 6194, DOI 10.17487/RFC6194, March 2011,
[RFC6931] Eastlake 3rd, D., "Additional XML Security Uniform
Resource Identifiers (URIs)", RFC 6931,
DOI 10.17487/RFC6931, April 2013,
[RFC7465] Popov, A., "Prohibiting RC4 Cipher Suites", RFC 7465,
DOI 10.17487/RFC7465, February 2015,
[RFC7696] Housley, R., "Guidelines for Cryptographic Algorithm
Agility and Selecting Mandatory-to-Implement Algorithms",
BCP 201, RFC 7696, DOI 10.17487/RFC7696, November 2015,
[SCHEMA] Thompson, H., Beech, D., Maloney, M., and N. Mendelsohn,
"XML Schema Part 1: Structures Second Edition", W3C
Recommendation, 28 October 2004,
<https://www.w3.org/TR/2004/REC-xmlschema-1-20041028/>. -
Biron, P. and A. Malhotra, "XML Schema Part 2: Datatypes
Second Edition", W3C Recommendation, October 2004,
[SipHash2] Aumasson, J. and D. Bernstein, "SipHash: A Fast Short-
Input PRF", Department of Computer Science, University of
Illinois at Chicago ,
[W3C] "World Wide Web Consortium", <https://www.w3.org>.
[XCANON] Boyer, J., Eastlake 3rd, D., and J. Reagle, "Exclusive XML
Canonicalization Version 1.0", W3C Recommendation, July
Hirsch, F., "XML Signature Properties", W3C Proposed
Recommendation, January 2013, <https://www.w3.org/TR/2013/
Bartel, M., Boyer, J., Fox, B., Simon, E., and B.
LaMacchia, "XML Signature Syntax and Processing (Second
Edition)", W3C Recommendation, June 2008,
Bartel, M., Boyer, J., Fox, B., Simon, E., and B.
LaMacchia, "XML Signature Syntax and Processing Version
1.1", W3C Proposed Recommendation, April 2013,
[XMLSEC] Eastlake 3rd, D. and K. Niles, "Secure XML: The New Syntax
for Signatures and Encryption", Addison-Wesley (Pearson
Education) ISBN 0-201-75605-6, 2003.
Hirsch, F., Roessler, T., and K. Yiu, "XML Security
Algorithm Cross-Reference", W3C Working Group Note,
January 2013, <https://www.w3.org/TR/2013/NOTE-xmlsec-
[XMSS] IANA, "XMSS: Extended Hash-Based Signatures",
[XPATH] Boyer, J., Hughes, M., and J. Reagle, "XML-Signature XPath
Filter 2.0", W3C Recommendation, 8 November 2002,
filter2-20021108/>. - Berglund, A., Boag, S., Chamberlin,
D., Fernandez, M., Kay, M., Robie, J., and J. Simeon, "XML
Path Language (XPath) 2.0 (Second Edition)",
W3C Recommendation, December 2010,
[XSLT] Saxonica, M., "XSL Transformations (XSLT) Version 2.0",
W3C Recommendation, January 2007,
Appendix A. Changes from RFC 6931
The following changes have been made in [RFC6931] to produce this
* Deleted Appendix on Changes from RFC 4051, since they were already
included in [RFC6931], and remove reference to RFC 4051 and to the
one Errata against RFC 4051.
* Fixed three errata as follows: [Err3597], [Err3965], and
[Err4004]. In cases where [RFC6931] had an erroneous URI, it is
still included in the indices and it is stated that
implementations SHOULD only generate the correct URI but SHOULD
understand both the correct and erroneous URI.
* Added the following algorithms:
| Section | Algorithm(s) |
| 2.2.4 | Poly1305 |
| 2.2.5 | SipHash-2-4 |
| 2.2.6 | XMSS and XMSSMT |
| 2.3.6 | ECDSA with SHA3 |
| 2.3.12 | Edwards-Curve Signatures |
| 2.6.7 | ChaCha20 |
| 2.6.8 | ChaCha20+Poly1305 |
| 2.7.1 | X25519 |
| 2.8.1 | HKDF |
Table 3
* Listed ECIES-KEM and RSAES-KEM in Section 2.6.4 so they are easier
to find even though the URI for them is specified in [GENERIC].
* Updated references for [GENERIC] and FIPS 186, added appropriate
* Added some XML examples.
* Fixed minor typos and added editorial changes.
Appendix B. Bad URIs
[RFC6931] included two bad URIs as shown below. "{Bad}" in the
indexes (Sections 4.1 and 4.2) indicates such a bad value.
Implementations SHOULD only generate the correct URI but SHOULD
understand both the correct and erroneous URI.
Appears in the indices of [RFC6931] (Sections 4.1 and 4.2 of this
document) when it should be "2006/12/xmlc14n11#" (i.e., the "12"
inside "xmlc12n11" should have been "14"). This is [Err3965] and
is corrected in this document.
Appears in the indices of [RFC6931] (Sections 4.1 and 4.2 of this
document) when it should be "2001/04/xmldsig-more#rsa-sha224".
This is [Err4004] and is corrected in this document.
The contributions of the following, listed in alphabetic order, by
reporting errata against [RFC6931] or contributing to this document,
are gratefully acknowledged:
Roman Danyliw, Pim van der Eijk, Frederick Hirsch, Benjamin Kaduk,
Alexey Melnikov, Gayle Noble, Axel Puhlmann, Juraj Somorovsky,
Peter Yee, and Annie Yousar.
The contributions of the following, listed in alphabetic order, to
[RFC6931], on which this document is based, are gratefully
Benoit Claise, Adrian Farrel, Stephen Farrell, Ernst Giessmann,
Frederick Hirsch, Bjoern Hoehrmann, Russ Housley, Satoru Kanno,
Charlie Kaufman, Konrad Lanz, HwanJin Lee, Barry Leiba, Peter
Lipp, Subramanian Moonesamy, Thomas Roessler, Hanseong Ryu, Peter
Saint-Andre, and Sean Turner.
The following contributors to RFC 4051 are gratefully acknowledged:
Glenn Adams, Joel Halpern, Russ Housley, Merlin Hughs, Gregor
Karlinger, Brian LaMachia, Shiho Moriai, and Joseph Reagle.
Author's Address
Donald E. Eastlake 3rd
Futurewei Technologies, Inc.
2386 Panoramic Circle
Apopka, FL 32703
United States of America
Phone: +1-508-333-2270
Email: d3e3e3@gmail.com
 End of changes. 1 change blocks. 
lines changed or deleted lines changed or added

This html diff was produced by rfcdiff 1.48. The latest version is available from http://tools.ietf.org/tools/rfcdiff/